From the team that brought you STRmix™

DBLR™ (database likelihood ratios) is an application designed for the rapid calculation of likelihood ratios (*LR*s) using STRmix™ deconvolutions.

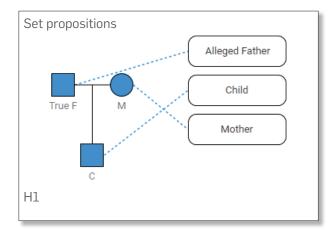
Telarc.
Registered

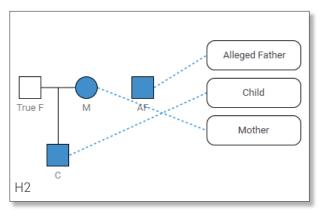
TM

Quality

ISO 9001

www.STRmix.com/dblr


FAST DBLRTM calculates millions of LRs in seconds.


ACCESSIBLE DBLR[™] runs on a user's PC, without the need for high-speed computing.

ENABLING DBLR[™] enables you to get more value from your DNA evidence.

WITH DBLR™ YOU WILL BE ABLE TO:

- · Achieve superfast database searches.
- · Visualise the value of your DNA mixture evidence.
- · Undertake mixture to mixture matches.
- Determine whether there is a common donor between samples.
- · Calculate any kinship relationship conceivable.

- AUTOMATED SEARCHING
- ↑* EXPLORE DECONVOLUTION

- & KINSHIP
- A SEARCH DATABASE
- SETTINGS
- SHOW RESULTS FOLDER

WHAT CAN DBLR™ DO?

- UNDERTAKE DIRECT COMPARISON of one or many components of a forensic DNA mixture to a database of known individuals (i.e. "Who contributed to the profile?").
- CARRY OUT FAMILIAL SEARCHING for a range of different relationships including siblings, half-siblings, parents, and children (i.e. "Is there a relative of the donor in the database?").
- **SEARCH FOR COMMON CONTRIBUTORS** between mixed DNA profiles (mixture to mixture comparisons). These LRs can now be visualised using a heat map (New in DBLR $^{\text{TM}}$ v1.1)
- **DETERMINE THE PROFILES** of the most likely contributors to a profile.
- **VISUALISE THE VALUE** of evidence by calculating expected *LR*s for one or many components of forensic DNA profiles for true and non-contributors using randomly generated individuals.
- MANAGE AUTOMATED SEARCHES for one or many DNA profiles against one or many databases of known individuals.
- MANAGE DATABASES of known contributors and STRmix™ deconvolutions from unsolved casework for easy matching.
- COMBINE MULTIPLE EVIDENCE PROFILES under the assumption that there is a common contributor within the different samples (Common Donor – New in DBLR™ v1.1).
- BUILD ANY PEDIGREE imaginable and calculate likelihood ratios given the different propositions ($Kinship New in DBLR^{\text{\tiny IM}} v1.1$).
- PROTECT YOUR SETTINGS with a user defined password (New in DBLR™ v1.1).

HOW DOES DBLR™ WORK?

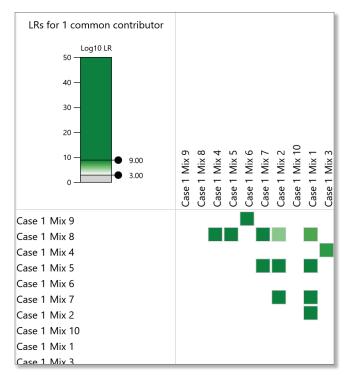
DBLR™ uses efficient algorithms for the fast calculation of LRs. With DBLR™ the user can import STRmix™ deconvolutions or single source-profiles and visualise the value of the evidence or carry out fast database searches. The DBLR™ Kinship function is both powerful and flexible. The user can load STRmix™ deconvolutions or single-source profiles from known individuals and link these with one or more pedigrees. The Common Donor function can better resolve the genotypes of queried contributors and search these against a database to identify possible donors.

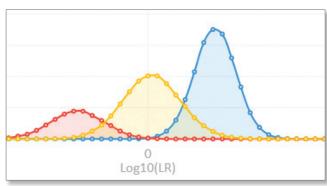
VALIDATION

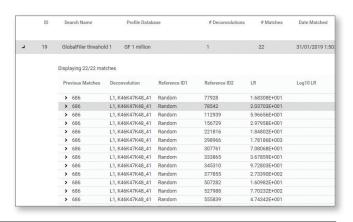
DBLR[™] has been extensively validated by the STRmix[™] team based at ESR, New Zealand.

SPECIFICATIONS

DBLR™ is designed to run standalone on an individual DNA analyst's PC. For guidance on hardware and software specifications please go to: www.strmix.com/dblr/specifications/


CERTIFICATION


The STRmix[™] team's quality management system is certified to AS/NZS ISO 9001:2015 by Telarc.


PUBLISHED DATA

The following papers describe the mathematics and application of $\mathsf{DBLR}^{\mathbb{M}}$:

- [1] Slooten K. Identifying common donors in DNA mixtures, with applications to database searches. Forensic Science International: Genetics 2017;26:40-7.
- [2] Kruijver M, Bright J-A, Kelly H, Buckleton J. Exploring the probative value of mixed DNA profiles. Forensic Science International: Genetics 2019;41: 1-10.
- [3] Bright J-A, Taylor D, Kerr Z, Buckleton J, Kruijver M. The efficacy of DNA mixture to mixture matching. Forensic Science International: Genetics 2019;41: 64-71.
- [4] Taylor D, Rowe E, Kruijver M, Abarno D, Bright J-A, Buckleton J. Inter-sample contamination detection using mixture deconvolution comparison. Forensic Science International: Genetics 2019; 40: 160-167.
- [5] J.-A. Bright, M. Jones Dukes, S.N. Pugh, I.W. Evett, J.S. Buckleton, Applying calibration to LRs produced by a DNA interpretation software. Australian Journal of Forensic Sciences. 2019; 1-7.
- [6] Taylor D, Kruijver M. Combining evidence across multiple mixed DNA profiles for improved resolution of a donor when a common contributor can be assumed. Forensic Science International: Genetics 2020; 49.

CONTACT

For more information about DBLR $^{\text{\tiny{IM}}}$ or for a quote please contact:

North/South/Central America Distributor:

Vic Meles

NicheVision Inc.

E: vic@nichevision.com

T: +1-866-840-3758 (US Only)

UK/Europe/Rest of World:

Adam McCarthy

T: +44(0)7590 405 501

E: Adam.Mccarthy@esr.cri.nz

INSTITUTE OF ENVIRONMENTAL SCIENCE AND RESEARCH (ESR)

ESR is New Zealand's Crown Research Institute specialising in science for communities. ESR uses world-leading science to safeguard our health, keep our communities safer, protect our food-based economy, and improve the health of our water and natural environment.

FORENSIC SCIENCE SA (FSSA)

FSSA provides services to some of South Australia's largest government departments and undertakes awardwinning research in forensic science.

STRMIX LIMITED

STRmix Limited is a subsidiary of ESR, founded to better serve international users of STRmix™.